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Abstract. Employing the standard hard-scattering approach (HSA) in conjunction with the running cou-
pling (RC) method, the latter joined with the infrared renormalon calculus, we compute power-suppressed
corrections ∼ 1/Q2n, n = 1, 2, . . . to the massless η′-meson–virtual-gluon transition form factor (FF)
Q2Fη′g∗g∗(Q2, ω). Contributions to the form factor from the quark and gluon components of the η′ meson
are taken into account. Analytic expressions for the FFs Fη′gg∗(Q2, ω = ±1) and Fη′g∗g∗(Q2, ω = 0) are
also presented, as well as Borel transforms B[Q2Fη′g∗g∗ ](u) and resummed expressions. It is shown that
except for ω = ±1, 0, the Borel transform contains an infinite number of infrared renormalon poles. It
is demonstrated that in the explored range of the total gluon virtuality 1 GeV2 ≤ Q2 ≤ 25 GeV2, power
corrections found with the RC method considerably enhance the FF Fη′g∗g∗(Q2, ω) relative to results
obtained only in the context of the standard HSA with a “frozen” coupling.

1 Introduction

During the last few years the interest in theoretical in-
vestigations of the quark-gluon structure of light mesons,
especially the pion, η and η′ mesons, has risen due to the
high-precision CLEO results on the electromagnetic Mγ
transition form factors (FFs) FMγ(Q2) [1] (with M denot-
ing one of these mesons), as well as because of the observed
very large branching ratios for the exclusive B → Kη′ and
semi-inclusive B → η′Xs decays [2].

The data on the η′γ transition FF were mainly used
for extracting information concerning the η′ quark compo-
nent of the meson distribution amplitude (DA). Schemes
and methods applied to this purpose range from light-
cone perturbation-theory calculations – with the quark
transverse-momentum k⊥ dependence kept in the hard-
scattering amplitude TH(x, k⊥, Q2) of the underlying hard
subprocess [3] – to the modified hard-scattering approach
(mHSA) with resummed transverse-momentum effects
(giving rise to Sudakov suppression factors) and such due
to the intrinsic transverse momentum of the meson wave
functions [4, 5], to the running coupling (RC) method,
employed for the estimation of power-suppressed correc-
tions to the η′γ transition FF [6]. In these investigations,
two different parameterizations were used, one employ-
ing the conventional η–η′ mixing scheme with one mixing
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angle θp [3, 4, 6] for both physical states and decay con-
stants and a second one, which considers two mixing an-
gles θ1 and θ8 to parameterize the weak decay constants
f i

P (P = η, η′; i = 1, 8) of the η and η′ mesons [5]. An
important conclusion drawn from these investigations, ir-
respective of the underlying method, is that the η′-meson
DA must be close to its asymptotic form and that the ad-
mixture of the first non-asymptotic term should be within
the range b2(µ2

0) � 0.05 ÷ 0.15, b2 being the first Gegen-
bauer coefficient. The CLEO data on the η′γ transition
and the two-angles mixing scheme were also used to esti-
mate the allowed range of the intrinsic charm content of
the η′-meson decay constant fc

η′ [5]. It turned out that the
value −65 MeV ≤ fc

η′ ≤ 15 MeV does not contradict the
CLEO data.

But apart from the ordinary light-quark and charm |η′
c〉

components, the η′ meson may also contain a two-gluon
valence Fock state |gg〉. Moreover, absent at the normal-
ization point µ0, a gluon component of the η′ meson will
appear in the region Q2 > µ2

0 owing to quark–gluon mix-
ing and renormalization-group evolution of the η′-meson
DA [7–11]. This can directly contribute to the η′γ transi-
tion at the next-to-leading order due to quark box diagrams
and also affect the leading-order result through evolution of
the quark component of the η′-meson DA. Hence, an effect
of the η′-meson gluon component on the η′γ transition is
only mild and was therefore neglected in most theoretical
investigations [3–6].

But the contribution of the gluon content of the η′
meson to the two-body non-leptonic exclusive and semi-
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inclusive decay ratios of the B meson may be sizeable.
Indeed, such a mechanism to account for the observed
large branching ratio [2]

Br(B → η′ +Xs) = (6.2 ± 1.6 ± 1.3) × 10−4, (1.1)

was proposed in [12]. In this work it was suggested that the
dominant fraction of the B → η′ +Xs decay rate appears
as the result of the transition g∗ → gη of a virtual gluon g∗
from the standard model penguin diagram b → sg∗. For
the computation of the contribution of this mechanism
to the Br(B → η′ + Xs) in [12], the g∗gη′ vertex func-
tion was approximated by the constant H(q2, 0,m2

η′) �
H(0, 0,m2

η′) � 1.8 GeV−1, the latter being extracted from
the analysis of the J/ψ → η′γ decay. Further investiga-
tions, however, demonstrated that effects of the QCD run-
ning coupling αs(q2) [13], as well as a momentum depen-
dence of the form factor H(q2, 0,m2

η′), properly taken into
account, considerably reduce the contribution to (1.1) of
the mechanism under consideration [14]. In order to cover
the gap between theoretical predictions and experimental
data in [15], a gluon fusion (spectator) mechanism was
proposed. In accordance with the latter, the η′ meson is
produced by the fusion of a gluon from the QCD penguin
diagram b → sg∗ with another one emitted by the light
quark inside theB meson. In this mechanism, the form fac-
tor1 Fη′g∗g∗(q12, q22 ,m

2
η′) appears owing to the g∗g∗ → η′

transition.
The same ideas form the basis for the computation

of the branching ratios of various two-body non-leptonic
exclusive decay modes of the B meson [16]. To account
for the data on the exclusive decay B → Kη′ in [17], a
mechanism was proposed, based on the assumption of a
strong intrinsic charm component of the η′ meson. But a
more detailed analysis [18] proved that the charm content of
the η′ is too small (fc

η′ � −2 MeV) to explain the observed
branching ratio Br(B → Kη′). The CLEO data on the
B-meson non-leptonic decays that stimulated interesting
theoretical works [19] remain actual until today [20].

The exclusive processes B → K(∗)η(′) were also ana-
lyzed within the QCD factorization approach [21] and var-
ious contributions to the corresponding branching ratios
were estimated [22]. In accordance with [22], the spectator
mechanism and the one connected to the gluon content
of the η and η′ mesons are not key factors in explaining
the pattern of the observed experimental data. Instead,
a more important role here plays the interference (con-
structive or destructive) of penguin amplitudes and large
radiative corrections to them, which bring the predicted
branching ratios into reasonable agreement with the data.

The η′-meson–virtual-(on-shell-)gluon transition form
factor Fη′g∗g∗(q21 , q

2
2 ,m

2
η′) is the central ingredient of analy-

ses performed within perturbative QCD (pQCD) and hence
requires further thorough investigations. Such theoretical
investigations are especially important in view of contradic-
tory predictions made for this FF in the literature [23–26].
For instance, in [23] the contribution of the gluon content

1 In this work we use the notions “vertex function” and “form
factor” on the same footing

of the η′ meson to the form factor Fη′gg∗(q21 , 0,m
2
η′) was es-

timated and found to be too small while Fη′gg∗(q21 , 0,m
2
η′)

itself is close to the form

Fη′gg∗(q21 , 0,m
2
η′) � H(0, 0,m2

η′)
q21/m

2
η′ − 1

=
1.8

q21/m
2
η′ − 1

GeV−1,

(1.2)
used in some phenomenological applications [14,15]. On the
other hand, in computations of the η′-meson–virtual-gluon
vertex function Fη′g∗g∗(q21 , q

2
2 ,m

2
η′), the gluon content of

the η′ meson was neglected and the asymptotic form of the
DA for the quark component was employed [24]. The same
vertex function Fη′g∗g∗(q21 , q

2
2 ,m

2
η′) was considered in [25],

where both the standard HSA [27] as well as the mHSA
were used, and the space- and time-like vertex functions
were analyzed. Some errors made in [23] in the descrip-
tion of the hard-scattering amplitude of the subprocess
g + g → g∗ + g∗ and in the definition of the evolution
of the η′-meson DA were corrected in [25]. Unfortunately,
also this latter work contains an incorrect expression for
the gluon component F g

η′g∗g∗(Q2, ω, η) of the form factor,
since it is antisymmetric under the exchange of the asym-
metry parameter ω ↔ −ω in clear conflict with Bose sym-
metry. More recently, in [26], the space-like form factor
Fη′g∗g∗(Q2, ω) was computed within the standard HSA.
The authors of this reference performed a detailed analy-
sis of the normalization of the gluon component of both
the η′-meson DA and that of the gluon projector onto a
pseudoscalar meson state.

In the present work, we investigate the massless η′-
meson–virtual-gluon space-like transition form factor
Fη′g∗g∗(Q2, ω) using the framework of the standard
HSA [27], as well as by applying the RC method together
with the infrared (IR) renormalon calculus [28]. Our re-
sults obtained within the standard HSA are in agreement
with those of [26]. But our central task here is the cal-
culation and evolution of power-suppressed corrections ∼
1/Q2n, n = 1, 2, . . . to the transition FFQ2Fη′g∗g∗(Q2, ω).
Because in the production of the η′ meson from the B de-
cay the momentum squared of the virtual gluon can vary
from 1 GeV2 to 25 GeV2, the power corrections in this do-
main of Q2 are expected to play an important role. Note,
however, that we elaborate only in a theoretical framework
to compute power corrections for the space-like transition
FF. Nevertheless, our technique can be generalized to en-
compass the time-like transition form factor, relevant for
B-meson decays, as well. Work in this direction will be
reported elsewhere.

The RC method enables us to estimate power correc-
tions coming from the end-point x, y → 0, 1 regions (for
definiteness we consider two mesons in an exclusive pro-
cess) in the integrals determining the amplitude for an
exclusive process. It is known [27] that in order to calcu-
late the amplitude of some hadron exclusive process, one
has to perform integrations over longitudinal momentum
fractions x, y of the involved partons. If one chooses the
renormalization scale µ2

R in the hard-scattering amplitude
TH of the corresponding partonic subprocess in such a way
as to minimize higher-order corrections and if one allows
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the QCD coupling constant αs(µ2
R) to run, then one en-

counters divergences arising from the end-point x, y → 0, 1
regions. The reason is that the scale µ2

R, as a rule, is equal
to the momentum squared of the hard virtual partons,
the latter carrying the strong interactions in the subpro-
cess’ Feynman diagrams [29] and, in general, depends on
x and y. Within the RC method this problem is resolved
by applying the IR renormalon calculus. It turns out that
this treatment allows us to evaluate power-behaved cor-
rections to the physical quantity under investigation. This
method was recently used for the computation of power
corrections to the electromagnetic form factors Fπ,K(Q2)
of the pion and the kaon [30, 31] and the electromagnetic
transition FFs FMγ(Q2) [6, 32] of the light pseudoscalar
mesons. Power corrections to hadronic processes can also
be calculated utilizing the Landau-pole free expression for
the QCD coupling constant [33]. This analytic approach
was used to compute in a unifying way power corrections to
the electromagnetic pion form factor and to the inclusive
cross section of the Drell–Yan process [34,35].

This paper is organized as follows. In Sect. 2 we briefly
review η–η′ mixing schemes in the flavor SUf (3) octet–
singlet and the quark-flavor bases, and discuss the evolution
of the quark and gluon components of the η′-meson DA
with the factorization scale. The important question of
the generalization of the hard-scattering amplitudes of the
η′g∗ transition to the RC method case is also considered.
Section 3 is devoted to a rather detailed presentation of the
RC method. In Sect. 4 we compute the quark and gluon
components of the transition FF Fη′g∗g∗(Q2, ω). Section 5
contains our numerical results. Finally, in Sect. 6 we make
our concluding remarks. The appendix contains additional
information on the η′-meson DA.

2 Quark and gluon contributions
to the η′–g∗ transition form factor

In this section we consider the quark–gluon content of the
η′ meson, as well as the η′ DA and give some general
expressions for determining the η′g∗ transition form factor
within both the standard HSA and the RC method.

2.1 Structure of the η′ meson

The parton Fock state decomposition of the pseudoscalar
P = η, η′ mesons can be generically written in the follow-
ing form:

|P 〉 = |Pa〉 + |Pb〉 + |Pc〉 + |Pg〉 , (2.1)

where |Pa〉 and |Pb〉 denote theP -meson light quarks u, d, s
and |Pc〉, |Pg〉 its charm and gluon components, respec-
tively. Fock states with additional gluons and qq quark–
antiquark pairs have been omitted for simplicity.

The P -meson light-quark content |Pa〉 , |Pb〉 can be de-
scribed either in the flavor SUf (3) octet–singlet or in the
quark-flavor basis. In the first scheme, the states |Pa〉 , |Pb〉

are expressed as superpositions of the SUf (3) singlet η1
and octet η8 states

|η1〉 =
Ψ1√

3

∣∣uu+ dd+ ss
〉
,

|η8〉 =
Ψ8√

6

∣∣uu+ dd− 2ss
〉
, (2.2)

whereas in the quark-flavor basis, the SUf (3) strange ηs

and non-strange ηq states are used, i.e.,

|ηq〉 =
Ψq√

2

∣∣uu+ dd
〉
, |ηs〉 = Ψs |s〉 . (2.3)

In (2.2) and (2.3) Ψi denote wave functions of the corre-
sponding parton states.

As mentioned above, the charm component of the η′
meson was estimated [18, 36] to be too small to consider-
ably affect the B-meson exclusive decays. Therefore, in the
present investigation we neglect the charm content of the
η′ meson. The maximal admixture of the two-gluon state
in the η′ meson was estimated to be around 26% of its con-
tent [37]. New results from the KLOE Collaboration [38]
are compatible with the two-gluon contribution in the η′
meson being below the level of 15%.

The pure light-quark sector of the η–η′ system without
charm and gluon admixtures can be treated by means of
the basic states (2.2) or (2.3). In the SUf (3) octet–singlet
basis, the η and η′ mesons are expressed as superpositions
of the η8, η1 states,

|η〉 = cos θp |η8〉 − sin θp |η1〉 ,
|η′〉 = sin θp |η8〉 + cos θp |η1〉 . (2.4)

Here, θp is the mixing angle of physical states in the octet–
singlet scheme. In the quark-flavor basis we get the same
expressions but with θp replaced by the mixing angle φp

of the physical states in the new basis ηq, ηs, viz.,

|η〉 = cosφp |ηq〉 − sinφp |ηs〉 ,
|η′〉 = sinφp |ηq〉 + cosφp |ηs〉 . (2.5)

The η1 and η8 states and the mixing angle θp in the octet–
singlet scheme can be expressed in terms of the ηq, ηs states
and the mixing angle φp in the quark-flavor basis and vice
versa. At the level of physical-state mixing there is no
difference between the two bases (2.2) and (2.3). This only
appears when one parameterizes the decay constants f i

P
of the P = η and η′ mesons in terms of〈

0|J i
µ5|P

〉
= if i

P pµ,

where J i
µ5 is the axial-vector current with i = q, s or

i = 1, 8. In the quark-flavor basis the decay constants
f

q(s)
P follow with great accuracy the pattern of the state

mixing [39,40]

fq
η = fq cosφp, fs

η = −fs sinφp,

fq
η′ = fq sinφp, fs

η′ = fs cosφp. (2.6)



510 S.S. Agaev, N.G. Stefanis: Power corrections to the space-like transition form factor Fη′g∗g∗(Q2, ω)

The situation with the parameterization of the decay con-
stants in the octet–singlet basis is different. In this case,
in order to take into account the flavor SUf (3) symmetry
breaking effects, a two mixing-angles scheme for the decay
constants f1(8)

P was introduced [41]:

f8
η = f8 cos θ8, f1

η = −f1 sin θ1,

f8
η′ = f8 sin θ8, f1

η′ = f1 cos θ1. (2.7)

The mixing angles θ1 and θ8 differ from each other and also
from the state mixing angle θp. Nevertheless, in some phe-
nomenological applications the conventional octet–singlet
mixing scheme, that is the scheme with one mixing angle
and with the assumption of the equality θ1 = θ8 = θp is
used. In the investigation of physical processes both the
octet–singlet and the quark-flavor bases may be used. A
detailed analysis of the η–η′ mixing problems and further
references can be found in [42].

In our present work we choose the quark-flavor ba-
sis (2.3) and the mixing scheme (2.5). In this scheme, the
decay constants fq and fs and the mixing angle φp have
the following values [40,42]:

fq = (1.07 ± 0.02)fπ, fs = (1.34 ± 0.06)fπ,

φp = 39.3◦ ± 1.0◦

with fπ = 0.131 GeV being the pion weak decay constant.
The KLOE result for φp = (41.8◦+1.9◦

−1.6◦ ) [38] is slightly
shifted towards larger values, but it still does not contra-
dict the average value φp = 39.3◦ ± 1.0◦. In our numerical
computations we shall use the central values of the con-
stants shown above.

The singlet part of the η′-meson DA2 φ(x, µ2) was ob-
tained in [9–11] by solving the evolution equation and was
found to depend on both functions φq(x, µ2) and φg(x, µ2).
These functions denote the quark and gluon components
of the η′-meson DA, respectively, and satisfy the symmetry
and antisymmetry conditions,

φq(x, µ2) = φq(1 − x, µ2), φg(x, µ2) = −φg(1 − x, µ2).
(2.8)

This follows from the symmetry properties of the DA of the
two-particle bound state of a neutral pseudoscalar meson
and is in fact enough to obtain general expressions for the
η′-meson–virtual-gluon transition form factor. The evolu-
tion of the functions φq(x, µ2) and φg(x, µ2) with the scale
µ2, as well as their dependence on the constants fq, fs and
φp will be considered in Sect. 2.3.

2.2 The η′–g∗ transition form factor Fη′g∗g∗(Q2, ω)

The massless η′-meson–virtual-gluon transition form fac-
tor,

Fη′g∗g∗(Q2, ω) = F q
η′g∗g∗(Q2, ω) + F g

η′g∗g∗(Q2, ω), (2.9)
2 The octet component of the η′-meson DA is irrelevant for

our present investigation and will not be considered here. In
what follows we refer to the singlet part of the η′-meson DA
as being the η′-meson DA.

can be defined in terms of the invariant amplitude

M = Mq +Mg, (2.10)

for the process

η′(P ) → g∗(q1) + g∗(q2), (2.11)

in the following way:

Mq(g) = −iF q(g)
η′g∗g∗(Q2, ω)δabε

µνρσεa∗
µ εb∗

ν q1ρq2σ. (2.12)

In (2.12) εaµ, ε
b
ν and q1, q2 are, respectively, the polariza-

tion vectors and four-momenta of the two gluons. Because
we study only the space-like FF, q21 and q22 obey the con-
straints Q2

1 = −q21 ≥ 0, Q2
2 = −q22 > 0 and Q2

1 = −q21 >
0, Q2

2 = −q22 ≥ 0. The form factor Fη′g∗g∗(Q2, ω) depends
on the total gluon virtuality Q2 and the asymmetry pa-
rameter ω, defined by

Q2 = Q2
1 +Q2

2, ω =
Q2

1 −Q2
2

Q2 . (2.13)

The asymmetry parameter ω varies in the region −1 ≤
ω ≤ 1. The value ω = ±1 corresponds to the η′-meson–on-
shell-gluon transition and the value ω = 0 to the situation
when the gluons have equal virtualities Q2

1 = Q2
2.

In accordance with the factorization theorems of pQCD
at high momentum transfer, the FFs F q(g)

η′g∗g∗(Q2, ω) are
given by the expressions

F q
η′g∗g∗(Q2, ω) (2.14)

=
[
T q

H(x,Q2, ω, µ2
F) + T q

H(x,Q2, ω, µ2
F)
]⊗ φq(x, µ2

F)

and

F g
η′g∗g∗(Q2, ω) (2.15)

=
[
T g

H(x,Q2, ω, µ2
F) − T g

H(x,Q2, ω, µ2
F)
]⊗ φg(x, µ2

F).

Here, x ≡ 1 − x and µ2
F represents the factorization scale.

In (2.14) and (2.15) we have used the notation

TH(x,Q2, ω, µ2
F) ⊗ φ(x, µ2

F)

=
∫ 1

0
TH(x,Q2, ω, µ2

F)φ(x, µ2
F)dx. (2.16)

The sum

T q
H(x,Q2, ω, µ2

F) + T q
H(x,Q2, ω, µ2

F) (2.17)

and the difference

T g
H(x,Q2, ω, µ2

F) − T g
H(x,Q2, ω, µ2

F) (2.18)

represent the hard-scattering amplitudes for the subpro-
cesses q + q → g∗ + g∗ and g + g → g∗ + g∗, respectively.
The Feynman diagrams contributing at the leading order
to these subprocesses’ amplitudes are depicted in Figs. 1
and 2.
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2
q

q
1

xP

xP q

xP

xP

2
q

1

Fig. 1. Leading-order Feynman diagrams contributing to the
hard-scattering subprocess q + q → g∗ + g∗

2
q

q
1xP

xP xP

xP q
1

q
2

Fig. 2. Feynman diagrams contributing at leading order to
the subprocess g + g → g∗ + g∗

In what follows, we omit the subscript H in (2.17)
and (2.18) and introduce instead the notation

T
q(g)
1 (x,Q2, ω, µ2

F) = T
q(g)
H (x,Q2, ω, µ2

F),

T
q(g)
2 (x,Q2, ω, µ2

F) = T
q(g)
H (x,Q2, ω, µ2

F).

In leading order of pQCD, we get for the hard-scatter-
ing amplitudes T q(g)

1 and T q(g)
2 of the massless η′-meson–

virtual-gluon transition FF the following expressions:

T q
1 (x,Q2, ω, µ2

R) = − 4π
3Q2

αs(µ2
R)

(1 + ω)x+ (1 − ω)x
,

T q
2 (x,Q2, ω, µ2

R) = − 4π
3Q2

αs(µ2
R)

(1 + ω)x+ (1 − ω)x
(2.19)

and

T g
1 (x,Q2, ω, µ2

R) =
παs(µ2

R)
Q2nf

(1 + ω)x+ (1 − ω)x
ω [(1 + ω)x+ (1 − ω)x]

,

T g
2 (x,Q2, ω, µ2

R) =
παs(µ2

R)
Q2nf

(1 + ω)x+ (1 − ω)x
ω [(1 + ω)x+ (1 − ω)x]

.

(2.20)

In deriving the hard-scattering amplitudes T g
1(2)(x,Q

2,

ω, µ2
R) (they are the object of contradictory conclusions

in the literature [25,26]), the following projection operator
of the η′-meson onto the two-gluon state has been used:

Pµν,ab = i
δab√
6√

nf

εµνγδq
γ
1 q

δ
2

ωQ2 .

Note that in the limit ω = 0 the difference T g
1 − T g

2 , be-
ing the physical hard-scattering amplitude, is singularity

free (see (4.25) below). In the expressions above, αs(µ2) is
the QCD coupling constant in the two-loop approximation
defined by

αs(µ2) =
4π

β0 ln(µ2/Λ2)

[
1 − 2β1

β2
0

ln ln(µ2/Λ2)
ln(µ2/Λ2)

]
, (2.21)

with β0 and β1 being the one- and two-loop coefficients of
the QCD beta function:

β0 = 11 − 2
3
nf , β1 = 51 − 19

3
nf . (2.22)

In (2.20), (2.21), and (2.22) Λ = 0.3 GeV is the QCD scale
parameter and nf is the number of active quark flavors.

The physical quantity Fη′g∗g∗(Q2, ω), represented at
sufficiently high Q2 by the factorization formulas (2.14),
(2.15), is independent of the renormalization scheme and
the renormalization and factorization scales µ2

R (µ2
R) and

µ2
F. Truncation of the perturbation series of Fη′g∗g∗(Q2, ω)

at any finite order causes a residual dependence on the
scheme as well as on these scales. At the leading order
of pQCD, the hard-scattering amplitude does not depend
on the factorization scale µ2

F but depends implicitly on
the renormalization scale µ2

R through αs(µ2
R).3 An explicit

dependence of the function TH on µ2
R and µ2

F appears at
O(αs) due to QCD corrections. As the scales µ2

R and µ2
F are

independent of each other and can be chosen separately, we
adopt in this work the natural and widely used “default”
choice for the factorization scale µ2

F = Q2 and omit in what
follows a dependence of the hard-scattering amplitude on
µ2

F (see (2.19) and (2.20)). For a more detailed discussion
of these questions, we refer the interested reader to [43].

In the standard HSA with a “frozen” coupling con-
stant [27] one sets the renormalization scaleµ2

R = µ2
R = Q2,

simplifying the calculation of the vertex function
Fη′g∗g∗(Q2, ω) considerably. In this approach the hard-
scattering amplitudes T q(g)

1,2 and hence the quark and gluon
components of the vertex function Fη′g∗g∗(Q2, ω) possess
symmetry features pertaining to the RC method. Indeed,
it is not difficult to see that

T q
1(2)(x,Q

2, ω) = T q
2(1)(x,Q

2, ω),

T q
1(2)(x,Q

2,−ω) = T q
2(1)(x,Q

2, ω) (2.23)

and

T g
1(2)(x,Q

2, ω) = T g
2(1)(x,Q

2, ω),

T g
1(2)(x,Q

2,−ω) = −T g
2(1)(x,Q

2, ω). (2.24)

Using (2.8) and (2.23), we then find

F q
η′g∗g∗(Q2, ω)

= T q
1 (x,Q2, ω) ⊗ φq(x,Q2) + (ω ↔ −ω)

= 2T q
1 (x,Q2, ω) ⊗ φq(x,Q2). (2.25)

3 Similar arguments hold for the scale µ2
R
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In a similar manner, using (2.8) and (2.24), one can
demonstrate that the following equalities hold:

F g
η′g∗g∗(Q2, ω)

= T g
1 (x,Q2, ω) ⊗ φg(x,Q2) + (ω ↔ −ω)

= 2T g
1 (x,Q2, ω) ⊗ φg(x,Q2). (2.26)

From (2.25) and (2.26) it follows that

F q
η′g∗g∗(Q2, ω) = F q

η′g∗g∗(Q2,−ω),

F g
η′g∗g∗(Q2, ω) = F g

η′g∗g∗(Q2,−ω). (2.27)

In pQCD calculations higher-order corrections to var-
ious physical processes, are, in general, large and in or-
der to improve the convergence of the corresponding per-
turbative series, different methods have been proposed.
In exclusive processes – considering the pion electromag-
netic form factor as a prominent example – the next-to-
leading order O(αs) correction contains logarithmic terms
∼ ln(Q2xy/µ2

R) (or ∼ ln(Q2xy/µ2
R)) [44,45], which can be

entirely or partly eliminated by a proper choice of the renor-
malization scale µ2

R (µ2
R). This can be achieved by taking

as a renormalization scale µ2
R = Q2xy [µ2

R = Q2xy] or
µ2

R = Q2x/2 [µ2
R = Q2x/2]. The renormalization scale

enters into the pQCD expression not only via logarith-
mic terms, but also through the argument of the running
coupling αs(µ2

R). In order to calculate the amplitude of
an exclusive process, an integration in corresponding in-
tegrals over the longitudinal momentum fractions of the
quarks and gluons in the involved hadrons has to be car-
ried out. Thus, in the pion electromagnetic FF calcula-
tions, the integration over the variables x and y has to
be performed. Traditionally, to avoid problems associated
with singularities of αs(µ2

R), one “freezes” the running cou-
pling by replacing x and y, e.g., by their mean values
x → 〈x〉 = 1/2, y → 〈y〉 = 1/2 in the argument of αs(µ2

R)
and performs then the calculation with αs(Q2/4) [44]. Re-
cently, the RC method for the calculation of various ex-
clusive processes with αs(µ2

R) was proposed. Within this
framework, one expresses the running coupling αs(Q2x) in
terms of αs(Q2) by employing the renormalization-group
equation and performs the integration over x(y) using the
principal value prescription. This allows one to estimate
power-suppressed corrections to the process under consid-
eration towards the end-point region of phase space, thus
improving the agreement of QCD theoretical predictions
with experimental data. An alternative option to calculate
power-behaved contributions with their coefficients would
be to use the analytic perturbation theory [33] along the
lines proposed in [34,35]. Next-to-leading order corrections
are known for only a few exclusive processes [44–46]. In
general, the renormalization scale µ2

R may be taken equal
or proportional to the square of the four-momentum q2 of
the virtual parton(s) mediating the strong interaction in
corresponding leading-order Feynman diagrams.

For the η′-meson–on-shell gluon transition (i.e., for ω =
±1), we adopt in this paper the choice

µ2
R = Q2x, µ2

R = Q2x. (2.28)

The renormalization scales (2.28) are equal to the momen-
tum squared |q2| of the virtual partons (gluon or quark)
in the corresponding Feynman diagrams. In the general
case (ω �= ±1), the absolute value of the square of the
four-momenta q2 of the virtual partons depends on both
the total gluon virtuality Q2 and the asymmetry parame-
ter ω. However, for the sake of simplifying the calculations
and to avoid problems related to the appearance of two
parameters Q2 and ω in the argument of αs, we shall use
a renormalization scale of the form given in (2.28). This
choice is justified from the physical point of view because
those parts of the scales ∼ Q2x, ∼ Q2x are exactly re-
sponsible for the power corrections ∼ 1/Q2n, n = 1, 2, . . .
to the form factor Q2Fη′g∗g∗(Q2, ω) which we are going
to compute.

The next problem then is how to generalize (2.19)
and (2.20) in such a way that the corresponding hard-
scattering amplitudes T q(g)

1(2) and the quark and gluon com-
ponents of the vertex function will obey (2.23)–(2.27). For
this purpose, we symmetrize the functions T q(g)

1(2) (x,Q2, ω,

µ2
R(µ2

R)) by exchanging µ2
R ↔ µ2

R to obtain

T q
1 (x,Q2, ω) =

1
2
[
T q

1 (x,Q2, ω, µ2
R) + T q

1 (x,Q2, ω, µ2
R)
]

= − 2π
3Q2

αs(Q2x) + αs(Q2x)
(1 + ω)x+ (1 − ω)x

, (2.29)

T q
2 (x,Q2, ω) =

1
2
[
T q

2 (x,Q2, ω, µ2
R) + T q

2 (x,Q2, ω, µ2
R)
]

= − 2π
3Q2

αs(Q2x) + αs(Q2x)
(1 + ω)x+ (1 − ω)x

and

T g
1 (x,Q2, ω)

=
1
2
[
T g

1 (x,Q2, ω, µ2
R) + T g

1 (x,Q2, ω, µ2
R)
]

=
π

2Q2nf

[
αs(Q2x) + αs(Q2x)

]
× (1 + ω)x+ (1 − ω)x
ω [(1 + ω)x+ (1 − ω)x]

,

T g
2 (x,Q2, ω)

=
1
2
[
T g

2 (x,Q2, ω, µ2
R) + T g

2 (x,Q2, ω, µ2
R)
]

=
π

2Q2nf

[
αs(Q2x) + αs(Q2x)

]
× (1 + ω)x+ (1 − ω)x
ω [(1 + ω)x+ (1 − ω)x]

. (2.30)

In the “frozen” coupling-constant approximation Q2x,
Q2x → Q2, (2.29) and (2.30) coincide with expressions
(2.19) and (2.20). It is also not difficult to verify that the
hard-scattering amplitudesT q(g)

1(2) (x,Q2, ω)(2.29) and (2.30)
satisfy (2.23) and (2.24). As a result, (2.25)–(2.27) remain
valid also within the RC method.
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2.3 Quark and gluon components
of the η′ meson distribution amplitude

The important input information needed for the compu-
tation of the form factor Fη′g∗g∗(Q2, ω) are the DAs of the
quark and gluon components of the η′ meson, namely, the
functions φq(x,Q2) and φg(x,Q2). In general, a meson DA
is a function containing all non-perturbative, long-distance
effects, which cannot be calculated by employing perturba-
tive QCD tools. Its dependence on x (or its shape) has to
be deduced from experimental data or found using some
non-perturbative methods, for example, QCD sum-rules
(see, e.g., [47]). In contrast, the evolution of the DA with
the factorization scale Q2 is governed by pQCD.

The evolution equation for the DA of a flavor singlet
pseudoscalar meson was derived and solved in [9–11]. It
turned out that due to mixing of the quark–antiquark and
two-gluon components of the meson DA, the evolution
equation has a (2 × 2) matrix form. The anomalous di-
mensions matrix, which enters into the evolution equation
at the one-loop order, has the following components [9–11]
(see also [48]):

γn
qq = CF

3 +
2

(n+ 1)(n+ 2)
− 4

n+1∑
j=1

1
j

 ,
γn

gg = Nc

 β0

Nc
+

8
(n+ 1)(n+ 2)

− 4
n+1∑
j=1

1
j

 , (2.31)

γn
qg =

12nf

(n+ 1)(n+ 2)
, γn

gq = CF
n(n+ 3)

3(n+ 1)(n+ 2)
,

where Nc = 3 and CF = 4/3 is the group theoretical
factor for SUc(3). The anomalous dimensions matrix has
the eigenvalues

γn
± =

1
2

[
γn

qq + γn
gg ±

√
(γn

qq − γn
gg)2 + 4γn

qgγ
n
gq

]
. (2.32)

The solutions of the evolution equation for the quark and
gluon components of the DA have, in general, the form

φq(x,Q2) = 6Cxx

×
1 +

∞∑
k=2,4,...

Bq
n

(
αs(µ2

0)
αs(Q2)

)γn
+

β0

+ ρg
nB

g
n

(
αs(µ2

0)
αs(Q2)

)γn−
β0



× C3/2
n (x− x)

 (2.33)

and

φg(x,Q2) = Cxx

×
∞∑

k=2,4,...

ρq
nB

q
n

(
αs(µ2

0)
αs(Q2)

) γn
+

β0

+Bg
n

(
αs(µ2

0)
αs(Q2)

) γn−
β0


×C5/2

n−1(x− x) (2.34)

with the constant C being defined as

C =
√

2fq sinφp + fs cosφp.

In (2.33) and (2.34) C3/2
n (z) and C5/2

n (z) are Gegenbauer
polynomials, calculable using the recurrence formula [49]

(n+1)Cν
n+1(z) = 2(n+ν)zCν

n(z)−(n+2ν−1)Cν
n−1(z),

(2.35)

Cν
0 (z) = 1, Cν

1 (z) = 2νz.

The parameters ρq
n and ρg

n are determined in terms of the
anomalous dimensions matrix elements

ρq
n = 6

γn
+ − γn

qq

γn
gq

, ρg
n =

1
6

γn
gq

γn− − γn
qq

. (2.36)

In (2.33) and (2.34) µ0 = 1 GeV is the normalization point,
at which the free input parameters Bq

n, B
g
n in the DAs

φq(x,Q2) and φg(x,Q2) have to be fixed. Exactly these
parameters determine the shape of the DAs.

For all n ≥ 2, the eigenvalues γn
± < 0 and their absolute

values increase withn. Hence, in the asymptotic limitQ2 →
∞, one has

(
αs(µ2

0)
αs(Q2)

) γn
+(γn−)

β0 ∼ ln
(
Q2/Λ2) γn

+(γn−)

β0 → 0

and therefore only the quark component of the η′-meson
DA survives, evolving to its asymptotic form, whereas the
gluon DA in this limit vanishes,

φq(x,Q2)
Q2→∞−→ 6Cxx, φg(x,Q2)

Q2→∞−→ 0. (2.37)

In this work, we shall use the η′-meson DA that contains
only the first non-asymptotic terms. In other words, we
suggest that in (2.33) and (2.34) Bq

2 �= 0, Bg
2 �= 0 and

Bq
n = Bg

n = 0 for all n ≥ 4. The numerical values of the
relevant parameters for nf = 3 are

γ2
qq = −50

9
, γ2

gg = −11, γ2
gq =

10
27
, γ2

qg = 3,

γ2
+ � −48

9
, γ2

− � −101
9
, ρq

2 � 16
5
, ρg

2 � − 1
90
.

(2.38)

Taking into account (2.38) and the expressions for the
required Gegenbauer polynomials

C
3/2
2 (x− x) =

3
2
[
5(x− x)2 − 1

]
= 6 (1 − 5xx) ,

C
5/2
1 (x− x) = 5(x− x),

we finally recast the η′-meson quark and gluon DAs into
the more suitable (for our purposes) forms,

φq(x,Q2) = 6Cxx
[
1 +A(Q2) − 5A(Q2)xx

]
,
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φg(x,Q2) = Cxx(x− x)B(Q2). (2.39)

In these expressions the functions A(Q2) and B(Q2) are
defined by

A(Q2) = 6Bq
2

(
αs(Q2)
αs(µ2

0)

) 48
81

− Bg
2

15

(
αs(Q2)
αs(µ2

0)

) 101
81

,

B(Q2) = 16Bq
2

(
αs(Q2)
αs(µ2

0)

) 48
81

+ 5Bg
2

(
αs(Q2)
αs(µ2

0)

) 101
81

.(2.40)

The η′-meson quark and gluon DAs for nf = 4 are given in
the appendix. Equations (2.39), (2.40), and (A.1) contain
all necessary information about the singlet part of the η′-
meson DA.

3 Running coupling method
and power-suppressed corrections

To compute the η′-meson–virtual-gluon transition form
factor Fη′g∗g∗(Q2, ω), we have to perform in (2.14) and
(2.15) the integration over x by inserting the explicit ex-
pressions for the hard-scattering amplitudesT q(g)

1,2 (x,Q2, ω)
and the η′-meson quark and gluon DAs, and retain the x
dependence of the coupling αs(Q2x) [αs(Q2x)]. Such cal-
culations lead to divergent integrals because the running
coupling αs(Q2x) [αs(Q2x)] suffers from an infrared singu-
larity in the limit x → 0 [x → 1]. This means that in order
to carry out computations with the running coupling, some
procedure for its regularization in the end-point x → 0, 1
regions has to be adopted.

As a first step in this direction, we express the run-
ning coupling αs(Q2x) in terms of αs(Q2), employing the
renormalization-group equation

∂αs(Q2x)
∂ lnx

= −β0

4π
[
αs(Q2x)

]2 − β1

8π2

[
αs(Q2x)

]3
. (3.1)

The solution of (3.1), obtained by keeping the leading
(αs lnx)k and next-to-leadingαs(αs lnx)k−1 powers of lnx,
reads [50]

αs(Q2x) � αs(Q2)
1 + lnx/t

[
1 − αs(Q2)β1

2πβ0

ln[1 + lnx/t]
1 + lnx/t

]
,

(3.2)
where αs(Q2) is the one-loop QCD coupling constant and
t = 4π/β0αs(Q2).

Inserting (3.2) into the expressions for the hard-scatter-
ing amplitudes and subsequently T q(g)

1,2 (x,Q2, ω) into (2.14)
and (2.15), we obtain integrals which are still divergent,
but which now can be calculated using existing methods.
One of these methods, applied in [30] for the calculation of
the electromagnetic pion form factor, allows us to find the
quantity under consideration as a perturbative series in
αs(Q2) with factorially growing coefficients Cn ∼ (n− 1)!.
Similar series with coefficients Cn ∼ (n−1)! may be found
also for the form factor Q2Fη′g∗g∗(Q2, ω), i.e.,

Q2Fη′g∗g∗(Q2, ω) ∼
∞∑

n=1

[
αs(Q2)

4π

]n

βn−1
0 Cn. (3.3)

But a perturbative QCD series with factorially growing
coefficients is a signal for the IR renormalon nature of
the divergences in (3.3). The convergence radius of the
series (3.3) is zero and its resummation should be per-
formed by employing the Borel integral technique. First,
one has to find the Borel transform B[Q2Fη′g∗g∗ ](u) of the
corresponding series [51],

B
[
Q2Fη′g∗g∗

]
(u) =

∞∑
n=1

un−1

(n− 1)!
Cn. (3.4)

Because the coefficients of the series (3.3) behave like
Cn ∼ (n − 1)!, the Borel transform (3.4) contains poles
located at the positive u axis of the Borel plane. In other
words, the divergence of the series (3.3) owing to (3.4) has
been transformed into pole-like singularities of the func-
tion B[Q2Fη′g∗g∗ ](u). These poles are the footprints of the
IR renormalons.

Now in order to define the sum (3.3) or to find the
resummed expression for the form factor, one has to invert
B[Q2Fη′g∗g∗ ](u) to get[

Q2Fη′g∗g∗(Q2, ω)
]res

(3.5)

∼ P.V.
∫ ∞

0
du exp

[
− 4π
β0αs(Q2)

u

]
B
[
Q2Fη′g∗g∗

]
(u)

and remove the IR renormalon divergences by the principal
value prescription.

The procedure described above is straightforward but,
at the same time, tedious. Fortunately, these intermedi-
ate operations can be bypassed by introducing the inverse
Laplace transforms of the functions in (3.2) [52], viz.,

1
(t+ z)ν

=
1

Γ (ν)

∫ ∞

0
du exp[−u(t+ z)]uν−1, Reν > 0

(3.6)
and

ln(t+ z)
(t+ z)2

=
∫ ∞

0
du exp[−u(t+z)](1−γE−lnu)u, (3.7)

where Γ (z) is the Gamma function, γE � 0.577216 is the
Euler constant, and z = lnx [or z = lnx].

Then using (3.2), (3.6) and (3.7) for αs(Q2x), we get [6]

αs(Q2x) = αs(Q2)t
∫ ∞

0
du exp(−ut)x−uR(u, t)

=
4π
β0

∫ ∞

0
du exp(−ut)x−uR(u, t), (3.8)

with the function R(u, t) defined as

R(u, t) = 1 − 2β1

β2
0
u(1 − γE − ln t− lnu). (3.9)

Employing (3.8) for αs(Q2x) and carrying out the integra-
tions over x, we obtain (see the next section) the quark
and gluon components of the form factor Fη′g∗g∗(Q2, ω)
directly in the Borel resummed form (3.5).



S.S. Agaev, N.G. Stefanis: Power corrections to the space-like transition form factor Fη′g∗g∗(Q2, ω) 515

The resummed vertex function [Q2Fη′g∗g∗(Q2, ω)]res –
except for the η′-meson–on-shell-gluon transition and the
ω = 0 case – contains an infinite number of IR renormalon
poles located at u0 = n, where n is a positive integer that,
in general, is given as a sum of a series, i.e.,

S(k0, Q
2, ω) ∼

∞∑
n=k0

4π
β0

P.V.
∫ ∞

0

e−utR(u, t)du
n− u

Cn(ω).

(3.10)
One appreciates that all information on the process asym-
metry parameter ω is accumulated in the coefficient func-
tions Cn(ω).

To avoid inessential technical details and to make the
presentation as transparent as possible, let us for the time
being neglect the non-leading term ∼ α2

s in (3.2) and make
the replacement R(u, t) → 1 in (3.10). Then, the integrals
in (3.10) take, after simple manipulations, the form

4π
β0

P.V.
∫ ∞

0

e−utdu
n− u

=
4π
β0

li(λn)
λn

, λ = Q2/Λ2, (3.11)

with the logarithmic integral li(ξ) defined by

li(ξ) = P.V.
∫ ξ

0

dt
ln t

. (3.12)

The function li(ξ) is expressible in terms of the function
E1(z) [49]

li(ξ) = −E1(− ln ξ), (3.13)

where

E1(z) =
∫ ∞

z

e−tt−1dt.

The latter expression can, for |z| → ∞, be expanded over
inverse powers of z

E1(z) = z−1e−z

[
M∑

m=0

m!
(−z)m

+O
(
|z|−(M+1)

)]
. (3.14)

Using (3.13) and (3.14), we find

li(ξ) � ξ

ln ξ

M∑
m=0

m!
(ln ξ)m

,
li(ξn)
ξn

� 1
n ln ξ

M∑
m=0

m!
(n ln ξ)m

.

(3.15)
It is not difficult to see that for Q2 � Λ2

4π
β0

li(λn)
λn

� 4π
M∑

m=1

[
αs(Q2)

4π

]m

βm−1
0

(m− 1)!
nm

. (3.16)

Choosing in (3.16)M → ∞ and comparing the obtained re-
sult with (3.3), we conclude that each term in the sum (3.10)
at fixed n is the resummed Borel expression of the se-
ries (3.16).

But we can look at the integrals in (3.10) from another
perspective. Namely, it is easy to show that

4π
β0

∫ ∞

0

e−utdu
n− u

=
∫ 1

0
αs(Q2x)xn−1dx =

1
n
f2n(Q),

(3.17)

where f2n(Q) are the moment integrals

fp(Q) =
p

Qp

∫ Q

0
dkkp−1αs(k2). (3.18)

The integrals fp(Q) can be calculated using the IR match-
ing scheme [53]

fp(Q) =
(
µI

Q

)p

fp(µI)

+ αs(Q2)
N∑

n=0

[
β0

2πp
αs(Q2)

]n

× [n! − Γ (n+ 1, p ln(Q/µI))] , (3.19)

where µI is the infrared matching scale and Γ (n+ 1, z) is
the incomplete Gamma function

Γ (n+ 1, z) =
∫ ∞

z

e−ttndt. (3.20)

In (3.19) fp(µI) are phenomenological parameters,
which represent the weighted average of αs(k2) over the
IR region 0 < k < µI and act at the same time as in-
frared regulators of the RHS of (3.17). The first term on
the RHS of (3.19) is a power-suppressed contribution to
fp(Q), which cannot be calculated within pQCD, whereas
the second term is the perturbatively calculable part of the
function fp(Q). Stated differently, the infrared matching
scheme allows one to estimate power corrections to the
moment integrals by explicitly dissecting them from the
full expression and introducing new non-perturbative pa-
rameters fp(µI). The values of these parameters have to
be extracted from experimental data.

In order to check the accuracy of both the RC method
(IR renormalon calculus) and the infrared matching
scheme, a Landau-pole free model for αs(Q2) was intro-
duced in [53] yielding

αs(Q2) =
4π
β0

[
1

lnλ
+ 125

1 + 4λ
(1 − λ)(4 + λ)4

]
. (3.21)

The model expression (3.21) was used for the exact cal-
culation of the moment integrals f exact

p (Q). The IR renor-
malon and the IR matching scheme results were compared
with f exact

p (Q) concluding that for N ≥ 2 the IR matching
scheme leads to a good agreement with the exact values of
fp(Q). As regards the calculation of the integrals fp(Q),
when employing the RC method with the principal value
prescription, a good agreement with f exact

2 (Q) was found
for p = 2, while for p = 1 a small deviation from f exact

1 (Q)
in the region of Q2 ∼ a few GeV2 was observed (the lowest
moment integral entering into our expressions is f2(Q)).
But even for p = 1, the agreement with f exact

1 (Q) within
the error bars is quite satisfactory in view of the uncer-
tainties produced by the principal value prescription itself.
Therefore, we can conclude that the RC method and the IR
matching scheme lead for the moment integrals fp(Q) to
approximately similar numerical results. It is remarkable
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that in both cases an enhancement of the IR renormalon
and matching scheme results relative to the leading-order
perturbative prediction was found.

After presenting our analysis, it becomes evident that
the Borel resummation technique enables us to estimate
with a rather good accuracy power-behaved corrections to
the integrals in (3.10) and hence to the vertex function
Fη′g∗g∗(Q2, ω). Of course, one can employ the IR match-
ing scheme and (3.19) to determine power corrections to
the form factor in explicit form. But as we have noted
above, in general, the form factor Q2Fη′g∗g∗(Q2, ω) con-
tains an infinite number of IR renormalon poles, or, stated
equivalently, an infinite number of f2n(Q) is required to
calculate sums like the one presented in (3.10). In real
numerical computations, in order to reach a good approx-
imation of the series (3.10), at least a sum of the first
15÷20 terms is needed, meaning the involvement of f2n(µI)
(n = 15 ÷ 20) non-perturbative parameters. But from the
experimental data, only the first few moments fp(µI) could
be extracted [54–57]. Values for f1(2 GeV) (in the litera-
ture the notation f1(µI) = α0(µI) is widely used) range
from α0(2 GeV) = 0.435 ± 0.021 [54] and α0(2 GeV) =
0.513+0.066

−0.045 [55] to α0(2 GeV) = 0.597+0.009
−0.010 [56]. Here, we

write down only sample results, obtained in these works,
in order to demonstrate the experimental situation with
α0(2 GeV) = f1(2 GeV). For f2(2 GeV) the value
f2(2 GeV) � 0.5 was deduced [53, 58] from the data on
structure functions [57].

In the framework of the RC method, we estimate the
same power corrections to a physical quantity, but here we
do not need additional information on fp(µI). Moreover,
this method gives us the possibility to calculate values
of the non-perturbative parameters fp(µI) by means of
the formula

f2n(µI) = n
4π
β0

li
(
λ̃n
)

λ̃n
, λ̃ = µ2

I/Λ
2, (3.22)

which can easily be found by comparing (3.11) and (3.17).
The calculated values of the first few even moments (nf =
3, Λ = 0.3 GeV) are

f2(2 GeV) � 0.535, f4(2 GeV) � 0.45,

f6(2 GeV) � 0.41. (3.23)

To compare our predictions with those computed via the
model αs(Q2) (see (3.21)), we choose nf = 3 and Λ =
0.25 GeV. The corresponding values are shown below:

fRC
2 (2 GeV) � 0.479, fRC

4 (2 GeV) � 0.393,

fmod
2 (2 GeV) � 0.450, fmod

4 (2 GeV) � 0.388.
(3.24)

One observes that the parameters fp(µI) of the RC method
are in agreement with both the experimental results and
the model calculations.

We have noted above that the principal value prescrip-
tion, adopted in this work in order to regularize divergent
integrals (see (3.5) and (3.10)) generates power-suppressed

(higher-twist) uncertainties

∼
∑

q

Nq
Φq(Q2)
Q2q

, (3.25)

where {Φq(Q2)} are calculable functions entirely fixed by
the residues of the Borel transform B[Q2FMg∗g∗ ](u) at
the poles q = u0 and {Nq} are arbitrary constants to
be fixed from the experimental data. In the case of the
η′γ electromagnetic transition form factorQ2Fη′γ(Q2), the
uncertainties (3.25) were estimated in [6]. For the η′-meson
asymptotic DA and for the parameters N1 = N2 = 1 and
N1 = N2 = −1, it was found that they do not exceed ±15%
of the η′γ form factor. Because the RC method allows one
to evaluate power corrections to a physical quantity, in
general, and for the η′γ transition form factor it has already
provided a good agreement with the CLEO data [6], one
has to introduce the constraint |N1,2| � 1 in order to
retain this agreement. In the present work we shall estimate
in our numerical analysis the higher-twist uncertainties
produced by the principal value prescription by choosing
the constants {Nq} = ±1. It will be demonstrated that the
±15% bounds are valid also for the η′g, η′g∗ transition
FFs. Inclusion of higher-twist corrections, arising from the
two-particle higher-twist and higher Fock states DAs of the
η′ meson, may, in principle, further improve this scheme.
These refinements are, however, beyond the scope of the
present investigation.

4 The form factor Fη′g∗g∗(Q2, ω)
within the RC method

In this section we calculate the quark and gluon compo-
nents of the vertex function Fη′g∗g∗(Q2, ω) within the RC
method. We also present our results for Fη′gg∗(Q2, ω =
±1), Fη′g∗g∗(Q2, ω = 0) and the asymptotic limit for the
form factor.

4.1 Quark component F q
η′g∗g∗(Q2, ω)

of the vertex function

To calculate the quark component of the vertex function
F q

η′g∗g∗(Q2, ω), we use (2.25) for F q
η′g∗g∗(Q2, ω), (2.29) for

the hard-scattering amplitude T q
1 (x,Q2, ω), and the ex-

pression for αs(Q2x) given in (3.8). Employing the quark
component of the η′-meson DA, φq(x,Q2), we get4

Q2F q
η′g∗g∗(Q2, ω)

= −32π2C[1 +A(Q2)]
β0

∫ ∞

0
due−utR(u, t)

×
[∫ 1

0

x1−uxdx
(1 + ω)x+ (1 − ω)x

4 In what follows integrals over the variable u have to be
understood in the sense of the Cauchy principal value
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+
∫ 1

0

xx1−udx
(1 + ω)x+ (1 − ω)x

]
+

160π2CA(Q2)
β0

∫ ∞

0
due−utR(u, t)

×
[∫ 1

0

x2−ux2dx
(1 + ω)x+ (1 − ω)x

+
∫ 1

0

x2x2−udx
(1 + ω)x+ (1 − ω)x

]
. (4.1)

Using the fact that the integral [59]∫ 1

0
xα−1xβ−1(1 − xr)γdx = B(α, β)2F1 (−γ, α;α+ β; r)

(4.2)
is expressible in terms of the Gauss hypergeometric func-
tion [60]

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
, (4.3)

we obtain

Q2F q
η′g∗g∗(Q2, ω)

= −32π2C[1 +A(Q2)]
β0(1 + ω)

∫ ∞

0
due−utR(u, t)B(2 − u, 2)

×
[
2F1

(
1, 2; 4 − u;

2ω
1 + ω

)
+ 2F1

(
1, 2 − u; 4 − u;

2ω
1 + ω

)]
+

160π2CA(Q2)
β0(1 + ω)

∫ ∞

0
due−utR(u, t)B(3 − u, 3)

×
[
2F1

(
1, 3; 6 − u;

2ω
1 + ω

)
+2F1

(
1, 3 − u; 6 − u;

2ω
1 + ω

)]
. (4.4)

In (4.2) and (4.3), B(x, y) and (a)n are the Beta function
and Pochhammer symbols, respectively, defined in terms
of the Gamma function Γ (z):

B(x, y) =
Γ (x)Γ (y)
Γ (x+ y)

, (a)n =
Γ (a+ n)
Γ (a)

.

From (4.4) a simple expression for the η′-meson–on-shell-
gluon transition form factor F q

η′gg∗(Q2, ω = ±1) can
be found:

Q2F q
η′gg∗(Q2, ω = ±1) = −16π2C[1 +A(Q2)]

β0

×
∫ ∞

0
due−utR(u, t) [B(1, 2 − u) +B(2, 1 − u)]

+
80π2CA(Q2)

β0

∫ ∞

0
due−utR(u, t)

× [B(3, 2 − u) +B(2, 3 − u)] , (4.5)

where we have used the equality [60]

2F1(a, b; c; 1) =
Γ (c)Γ (c− a− b)
Γ (c− a)Γ (c− b)

. (4.6)

It is worth noting that (4.5) can be obtained from (2.25)
by employing the ω → ±1 limits of the hard-scattering
amplitudes (2.29):

T q
1 (x,Q2, ω = ±1) + T q

2 (x,Q2, ω = ±1)

= − π
3Q2

[
αs(Q2x) + αs(Q2x)

] [ 1
x

+
1
x

]
. (4.7)

In the case of gluons with equal virtualities Q2
1 = Q2

2 (and
hence in the ω = 0 case), the form factor can be found
employing the expression for the hard-scattering amplitude

T q
1 (x,Q2, ω = 0) + T q

2 (x,Q2, ω = 0)

= − 4π
3Q2

[
αs(Q2x) + αs(Q2x)

]
. (4.8)

Calculation leads to the simple expression

Q2F q
η′g∗g∗(Q2, ω = 0)

= −64π2C(1 +A(Q2))
β0

∫ ∞

0
due−utR(u, t)B(2 − u, 2)

+
320π2CA(Q2)

β0

∫ ∞

0
due−utR(u, t)B(3 − u, 3). (4.9)

Let us note that (4.9) can be deduced from (4.4) in the
limit ω → 0 by taking into account that [60]

2F1(a, b; c; 0) = 1.

The next important problem to be solved within the frame-
work of the RC method, is to reveal the IR renormalon poles
in (4.4), (4.5) and (4.9) because without such a clarification
all these expressions would have merely a formal character.

We start from the simple case, i.e., from (4.5), and get

B(1, 2 − u) +B(2, 1 − u)

=
Γ (1)Γ (2 − u)
Γ (3 − u)

+
Γ (2)Γ (1 − u)
Γ (3 − u)

=
1

2 − u
+

1
(1 − u)(2 − u)

=
1

1 − u

and

B(3, 2 − u) +B(2, 3 − u)

=
Γ (3)Γ (2 − u)
Γ (5 − u)

+
Γ (2)Γ (3 − u)
Γ (5 − u)

=
2

(2 − u)(3 − u)(4 − u)
+

1
(3 − u)(4 − u)

=
1

2 − u
− 1

3 − u
.
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In deriving these expressions we used the following property
of the Gamma function:

zΓ (z) = Γ (z + 1).

Hence we have

Q2F q
η′gg∗(Q2, ω = ±1) (4.10)

= −16π2C[1 +A(Q2)]
β0

∫ ∞

0
e−utR(u, t)

du
1 − u

+
80π2CA(Q2)

β0

∫ ∞

0
e−utR(u, t)

(
1

2 − u
− 1

3 − u

)
du.

As one sees, the structure of the IR renormalon poles is
very simple; we encounter only a finite number of single
poles located at u0 = 1, 2 and 3.

In the same manner we get from (4.9)

Q2F q
η′g∗g∗(Q2, ω = 0)

= −64π2C(1 +A(Q2))
β0

×
∫ ∞

0
due−utR(u, t)

1
(2 − u)(3 − u)

+
640π2CA(Q2)

β0
(4.11)

×
∫ ∞

0
due−utR(u, t)

1
(3 − u)(4 − u)(5 − u)

.

In this case the single IR renormalon poles are located at
the points u0 = 2, 3, 4 and 5.

In order to get the IR renormalon structure of the in-
tegrands in (4.4), we have to expand the hypergeometric
function 2F1(a, b; c; z) in powers of z (see (4.3)), where
the condition |z| < 1 must hold. But the argument of the
function 2F1(a, b; c; 2ω/(1 + ω)) satisfies this requirement
only in the region ω ∈ (0, 1). In the region ω ∈ (−1, 0)
an expression obtained from (4.4) by means of a simple
transformation (see (4.17) below) has to be used because
in this case the argument of the hypergeometric function
becomes equal to 2ω/(ω − 1) < 1, obeying in the region
ω ∈ (−1, 0) the required constraint. But regardless of
the expansion region, we obtain in both cases the same
IR renormalon structure. Adding to this argumentation
the evident fact that the vertex function is symmetric un-
der the replacement ω ↔ −ω (cf. (2.27)), we can restrict
the study of the form factor Q2F q

η′g∗g∗(Q2, ω) to the re-
gion ω ∈ (0, 1). Then, we can expand the hypergeometric
functions 2F1(a, b; c; 2ω/(1 + ω)) in the region ω ∈ (0, 1),
via (4.3). For example, for one of these functions, we get

B(2, 2 − u)2F1 (1, 2; 4 − u;β)

=
Γ (2)Γ (2 − u)
Γ (4 − u)

∞∑
k=0

(1)k(2)k

(4 − u)k

βk

k!

=
∞∑

k=0

Γ (k + 2)Γ (2 − u)
Γ (k + 4 − u)

βk =
∞∑

k=0

B(k + 2, 2 − u)βk,

with

β =
2ω

1 + ω
.

The remaining terms in (4.4) can be treated in the same
manner and as a result we obtain

Q2F q
η′g∗g∗(Q2, ω)

= −32π2C[1 +A(Q2)]
β0(1 + ω)

∫ ∞

0
due−utR(u, t)

×
∞∑

k=0

[B(2 − u, k + 2) +B(2, k + 2 − u)]βk

+
160π2CA(Q2)
β0(1 + ω)

∫ ∞

0
due−utR(u, t) (4.12)

×
∞∑

k=0

[B(3 − u, k + 3) +B(3, k + 3 − u)]βk.

The IR renormalon structure of the integrands in (4.12) is
quite clear now. In fact, we can write the Beta functions
entering (4.12) in the following form:

B(2, k + 2 − u) =
Γ (2)Γ (k + 2 − u)
Γ (k + 4 − u)

=
1

(k + 2 − u)(k + 3 − u)

and correspondingly

B(2 − u, k + 2) =
Γ (k + 2)

(2 − u)(3 − u) . . . (k + 3 − u)
,

B(3, k + 3 − u) =
2

(k + 3 − u)(k + 4 − u)(k + 5 − u)
,

B(3 − u, k + 3) =
Γ (k + 3)

(3 − u)(4 − u) . . . (k + 5 − u)
.

Here we have an infinite number of single IR renormalon
poles located at the points u0 = k + 2, k + 3; u0 =
2, 3, . . . k+3; u0 = k+3, k+4, k+5 and u0 = 3, 4, . . . , k+
5, respectively.

The last question to be answered is whether one can use
our results, obtained in the context of the RC method, in
the limit Q2 → ∞ in order to regain the asymptotic form
of the form factor F q

η′g∗g∗(Q2 → ∞, ω). It is clear that re-
gardless of the methods employed and the approximations
done, in the limit Q2 → ∞ the form factor F q

η′g∗g∗(Q2, ω)
must reach its asymptotic form. This is true, of course, for
our computations, as we estimate power-suppressed correc-
tions to the form factor Q2F q

η′g∗g∗(Q2, ω), which become
important in a region of Q2 ∼ of a few GeV2, but vanish in
the asymptotic limit. As we have emphasized in Sect. 2, in
the asymptotic limit the gluon DA of the η′-meson satisfies
φg(x,Q2) → 0 and hence

Q2F g
η′g∗g∗(Q2, ω)

Q2→∞−→ 0.
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The DA of the quark component φq(x,Q2) of the η′ me-
son evolves for Q2 → ∞ to the asymptotic DA (2.37)
and all non-asymptotic terms in φq(x,Q2) proportional to
C

3/2
n (x− x), n > 0 (in our case ∼ A(Q2)) vanish. There-

fore, the results which we shall obtain here describe not
only the asymptotic limit ofQ2F q

η′g∗g∗(Q2, ω), but also the
asymptotic limit of the vertex function Q2Fη′g∗g∗(Q2, ω)
itself.

In the limit Q2 → ∞ the asymmetry parameter can
take values ω → ±1 (if we pass to the limit Q2 → ∞
at fixed Q2

2 or Q2
1), ω = 0 (Q2

1 = Q2
2 and Q2 → ∞) or

ω �= ±1, 0 (if we take the limit Q2 → ∞ at fixed ω). We
consider here all possibilities:
(a) Q2 → ∞, ω → ±1,
(b) Q2 → ∞, ω = 0 and
(c) Q2 → ∞, ω �= ±1, 0.

In the limit Q2 → ∞, we also take into account that
the second term in the expansion αs(Q2x) (3.8) has to be
neglected. In other words, in the limit Q2 → ∞, we find∫ ∞

0
e−utR(u, t)du →

∫ ∞

0
e−utdu. (4.13)

We begin from the simpler case (a). In (4.10) we have
already obtained the desired limit, but A(Q2) �= 0. Taking
into account (4.13) and A(Q2) → 0, we get

Q2Fη′gg∗(Q2, ω = ±1)
Q2→∞−→

− 16π2C

β0

∫ ∞

0

e−utdu
1 − u

= −16π2C

β0

li(λ)
λ

.

It is easy to show that using only the leading term in the
expansion of li(λ)/λ (see (3.15)), we find

Q2Fη′gg∗(Q2, ω = ±1)
Q2→∞−→ −4πCαs(Q2). (4.14)

The limit Q2 → ∞, ω = 0 can be analyzed by similar
means. Thus, from (4.11) we get

Q2Fη′g∗g∗(Q2, ω = 0)
Q2→∞−→ −64π2C

β0

∫ ∞

0

e−utdu
(2 − u)(3 − u)

= −64π2C

β0

[
li(λ2)
λ2 − li(λ3)

λ3

]
,

which in the limit under consideration simplifies to

Q2Fη′g∗g∗(Q2, ω = 0)
Q2→∞−→ −8πCαs(Q2)

3
. (4.15)

Now let us consider the more interesting case (c). Then,
from (4.4) and (4.13), we obtain

Q2Fη′g∗g∗(Q2, ω)
Q2→∞−→

− 32π2C

β0(1 + ω)

∫ ∞

0
due−utB(2, 2 − u)

×
[

2F1

(
1, 2; 4 − u;

2ω
1 + ω

)

+ 2F1

(
1, 2 − u; 4 − u;

2ω
1 + ω

)]
. (4.16)

As an example, we analyze the second term in (4.16) (see
also (4.12))∫ ∞

0
due−utB(2, 2 − u)2F1 (1, 2 − u; 4 − u;β)

=
∫ ∞

0
due−ut

∞∑
k=0

B(2, k + 2 − u)βk

=
∞∑

k=0

Γ (2)βk

∫ ∞

0
due−ut

(
1

k + 2 − u
− 1
k + 3 − u

)

=
∞∑

k=0

Γ (2)
[
li(λk+2)
λk+2 − li(λk+3)

λk+3

]
βk.

In the considered limit, one finds

li(λk+2)
λk+2 − li(λk+3)

λk+3 →
1

lnλ

(
1

k + 2
− 1
k + 3

)
=

1
lnλ

1
(k + 2)(k + 3)

.

Then, the result reads

∞∑
k=0

Γ (2)
[
li(λk+2)
λk+2 − li(λk+3)

λk+3

]
βk →

1
lnλ

∞∑
k=0

Γ (2)
(k + 2)(k + 3)

βk

=
1

lnλ

∞∑
k=0

B(2, k + 2)βk =
1

lnλ
B(2, 2)2F1(1, 2; 4;β).

The same method can be applied to the first function
in (4.16). But before doing that, it is instructive to employ
the transformation

2F1(a, b, c; z) = (1 − z)−a
2F1

(
a, c− b, c;

z

z − 1

)
. (4.17)

After performing all these operations we find

Q2Fη′g∗g∗(Q2, ω)
Q2→∞−→

− 64π2C

β0(1 + ω)
1

lnλ
B(2, 2)2F1(1, 2; 4;β)

= −8πCαs(Q2)
3(1 + ω) 2F1(1, 2; 4;β). (4.18)

Taking into account the expression for the hypergeometric
function 2F1(1, 2; 4;β) in terms of elementary ones [60],

2F1(1, 2; 4;β) =
3
β3 [β(2 − β) + 2(1 − β) ln(1 − β)] ,

(4.19)
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we finally obtain

Q2Fη′g∗g∗(Q2, ω)
Q2→∞−→ −4πCαs(Q2)f(ω),

f(ω) =
1
ω2

(
1 +

1 − ω2

2ω
ln

1 − ω

1 + ω

)
. (4.20)

In our argumentations we have tacitly assumed that ω ∈
(0, 1). But (4.20) holds for all values of ω �= ±1, 0, which
is evident from the equality f(ω) = f(−ω).

Equations (4.14), (4.15) and (4.20) can be obtained in
the standard HSA using the corresponding hard-scattering
amplitudes (4.7), (4.8) and (2.19). The analysis carried out
so far proves the correctness of the RC method leading to
the expected expressions for the form factorQ2Fη′g∗g∗(Q2,
ω) at Q2 → ∞ and demonstrating at the same time the
consistency of the symmetrization of the hard-scattering
amplitudes (2.29) and (2.30).

4.2 Contribution of the gluon component
of the η′-meson to the form factor Fη′g∗g∗(Q2, ω)

The contribution of the gluon component of the η′-meson
to the form factor Fη′g∗g∗(Q2, ω) can be computed using
the methods described in the previous subsection.

Using (2.30) for the hard-scattering amplitude
T g

1 (x,Q2, ω), (2.26) and the gluon component of the η′-
meson DA, we have for the gluon part of the form factor

Q2F g
η′g∗g∗(Q2, ω)

=
4π2CB(Q2)

3β0

∫ ∞

0
due−utR(u, t) (4.21)

×
[∫ 1

0
dxx1−ux(x− x)

(1 + ω)x+ (1 − ω)x
ω [(1 + ω)x+ (1 − ω)x]

+
∫ 1

0
dxxx1−u(x− x)

(1 + ω)x+ (1 − ω)x
ω [(1 + ω)x+ (1 − ω)x]

]
,

which after some simple calculations becomes

Q2F g
η′g∗g∗(Q2, ω)

=
4π2CB(Q2)

3β0ω

∫ ∞

0
due−utR(u, t)

×
{
B(4 − u, 2)2F1

(
1, 4 − u; 6 − u;

2ω
1 + ω

)
+B(4, 2 − u) 2F1

(
1, 4; 6 − u;

2ω
1 + ω

)
− 2ω

1 + ω
B(3, 3 − u)

×
[
2F1

(
1, 3 − u; 6 − u;

2ω
1 + ω

)
+ 2F1

(
1, 3; 6 − u;

2ω
1 + ω

)]

−1 − ω

1 + ω

[
B(2 − u, 4)2F1

(
1, 2 − u; 6 − u;

2ω
1 + ω

)
+B(2, 4 − u)2F1

(
1, 2; 6 − u;

2ω
1 + ω

)]}
. (4.22)

For the η′-meson–on-shell-gluon transition, we find

Q2F g
η′gg∗(Q2, ω = ±1)

=
4π2CB(Q2)

3β0

∫ ∞

0
due−utR(u, t)

× [B(1, 4 − u) +B(4, 1 − u) −B(2, 3 − u)

− B(3, 2 − u)] , (4.23)

or equivalently

Q2F g
η′gg∗(Q2, ω = ±1) =

4π2CB(Q2)
3β0

(4.24)∫ ∞

0
due−utR(u, t)

(
1

1 − u
− 4

2 − u
+

4
3 − u

)
.

The form factorQ2F g
η′g∗g∗(Q2, ω = 0) can be calculated

by employing the following form for the hard-scattering am-
plitude:

T g
1 (x,Q2, ω) − T g

2 (x,Q2, ω) (4.25)

=
2π

3Q2

[
αs(Q2x) + αs(Q2x)

] x− x

1 − ω2(x− x)2
,

which for ω = 0 leads to a very simple expression. Then,
it is not difficult to demonstrate that

Q2F g
η′g∗g∗(Q2, ω = 0) =

16π2CB(Q2)
3β0

(4.26)

×
∫ ∞

0
due−utR(u, t)

× [B(4 − u, 2) − 2B(3 − u, 3) +B(2 − u, 4)] .

This latter expression can be recast into the form

Q2F g
η′g∗g∗(Q2, ω = 0) =

16π2CB(Q2)
3β0

(4.27)

×
∫ ∞

0
due−utR(u, t)

×
[

1
2 − u

− 5
3 − u

+
8

4 − u
− 4

5 − u

]
.

The IR renormalon structure of the integrands in (4.24)
and (4.27) is obvious: they have a finite number of IR renor-
malon poles located at the points u0 = 1, 2, 3 and u0 =
2, 3, 4, 5, respectively. In order to find the IR renormalon
structure of the integrand in (4.22), we expand the corre-
sponding hypergeometric functions over β = 2ω/(1 + ω)
in the region ω ∈ (0, 1), providing the following result:

Q2F g
η′g∗g∗(Q2, ω) =

4π2CB(Q2)
3β0ω
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×
∫ ∞

0
due−utR(u, t) (4.28)

×
∞∑

k=0

{
[B(k + 4, 2 − u) +B(k + 4 − u, 2)]βk

− 1 − ω

1 + ω
[B(k + 2, 4 − u) +B(k + 2 − u, 4)]βk

− [B(k + 3, 3 − u) +B(k + 3 − u, 3)]βk+1
}
.

Using the identities

B(k + 4, 2 − u) =
Γ (k + 4)

(2 − u)(3 − u) . . . (k + 5 − u)
,

B(k + 4 − u, 2) =
1

(k + 4 − u)(k + 5 − u)
,

B(k + 2, 4 − u) =
Γ (k + 2)

(4 − u)(5 − u) . . . (k + 5 − u)
,

B(k + 2 − u, 4) =

6
(k + 2 − u)(k + 3 − u)(k + 4 − u)(k + 5 − u)

,

B(k + 3, 3 − u) =
Γ (k + 3)

(3 − u)(4 − u) . . . (k + 5 − u)
,

B(k + 3 − u, 3) =
2

(k + 3 − u)(k + 4 − u)(k + 5 − u)

it is easy to conclude that there is an infinite number of
IR renormalon poles, being located at the points u0 =
2, 3, . . . k + 5; u0 = k + 4, k + 5; u0 = 4, 5, . . . k + 5; u0 =
k + 2, k + 3, k + 4, k + 5; u0 = 3, 4, . . . k + 5 and u0 =
k + 3, k + 4, k + 5.

5 Numerical analysis

We begin this section by comparing the results obtained
with the RC method with those from the IR matching
scheme. In Sect. 3 we have noted that from experimen-
tal data only values of the non-perturbative parameters
f1(2 GeV) and f2(2 GeV) have been extracted. We also
know that the lowest-order moment integral and hence
the parameter entering our formulas is f2(2 GeV). There-
fore, to make the comparison as clear as possible, we should
choose the input parameters for the η′–virtual-gluon tran-
sition in such a way as to determine the behavior of the form
factor solely with f2(2 GeV). This can be easily achieved
if we set for the η′-meson DA parameters

Bq
2(µ2

0) = 0, Bg
2 (µ2

0) = 0.

Under these circumstances, the gluon component of the
vertex function vanishes. To remove from the analysis the
higher-moment integrals fp(Q), p > 2, we consider only the
η′-meson–on-shell-gluon transition, i.e., the ω = ±1 case.
Moreover, we neglect the ∼ α2

s order term in (3.2) and set

Fig. 3. Scaled η′g transition form factor −Q2Fη′gg∗(Q2, ω =
±1) versus Q2. The solid line is computed within the RC
method, the dashed one is found using the IR matching scheme
with f2(2 GeV) � 0.535. The dot-dashed curve is obtained in
the framework of the IR matching scheme using for f2(2 GeV)
the experimental value 0.5

in (3.8) R(u, t) = 1 because in (3.19) αs is used at the level
of the one-loop order accuracy. After these simplifications,
the FF is given by the following expression:

Q2Fη′gg∗(Q2, ω = ±1) = −16π2C

β0

∫ ∞

0

e−utdu
1 − u

= −4πCf2(Q). (5.1)

Results of our computations are shown in Fig. 3, where,
in order to distinguish the various curves, these are dis-
played in the region of Q2 ∈ [1, 4] GeV2, whereas at higher
Q2 they are close to each other. The RC method and the
IR matching scheme5 both lead almost to identical pre-
dictions in the entire domain 1 GeV2 ≤ Q2 ≤ 25 GeV2,
provided that in the IR matching scheme one uses in ex-
pression (3.19) the value f2(2 GeV) � 0.535 found within
the RC method (3.23). The curve following from the IR
matching scheme deviates from the prediction obtained
with the RC method only for Q2 < 1.4 GeV2. On the
other hand, the deviation of that curve, calculated using
the experimental value f2(2 GeV) � 0.5, from the result of
the RC method is sizeable in the region Q2 = 1 ÷ 2 GeV2,
reaching ∼ 30% at Q2 = 1 GeV2. A similar behavior was
observed in the calculation of the pion electromagnetic form
factor, carried out within the context of these methods [61].
The difference between the solid and the dot-dashed lines
in Fig. 3 is considerably reduced when varying the QCD
scale parameter Λ = 0.3 GeV or the experimental value
of f2(2 GeV) within their corresponding uncertainty lim-
its. But we are not going to make decisive conclusions
from these rather model-dependent calculations. Our aim
here is to check and demonstrate that the RC method and

5 Note that in the calculations within the IR matching
scheme, (3.19) with N = 4 has been used
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Fig. 4. The quark (left panel) and gluon (right
panel) components of the transition form factor
Q2F q

η′g∗g∗(Q2, ω) as functions of Q2. The solid
curves are obtained using the RC method, whereas
the broken lines are calculated within the standard
HSA. The quark component is computed at various
ω values by employing the asymptotic DA. In the
right panel the correspondence between the curves
and the input parameter Bg

2 is Bg
2 = 8 for the

curves labelled 1 and Bg
2 = 4 for those labelled 2

the IR matching scheme predict in the considered region
1 GeV2 ≤ Q2 ≤ 25 GeV2 almost identical results that do
not contradict experiment.

In order to proceed with the computation of the η′-
meson–gluon vertex function and explore the role played
by the η′–gluon content in this process, we have to define
the allowed values of the free input parameters Bq

2 and Bg
2

at the normalization point µ2
0 = 1 GeV2. These parameters

determine the shape of the DAs of the quark and gluon
components of the η′-meson and, in general, they have to
be extracted from experimental data or computed by non-
perturbative techniques. The comparison of the η′-meson–
photon electromagnetic transition FF Fη′γ(Q2) with the
CLEO data leads to the conclusion that the η′-meson DA
must be close to its asymptotic form with a coefficient
Bq

2 � 0.1 deduced in [6]. But this conclusion was made by
neglecting the contribution of the gluon component of the
η′-meson to the η′γ transition FF. The investigation of the
FF Fη′γ(Q2) was extended and revised in [62]. In fact, in
this work the FF Fη′γ(Q2) was computed within the RC
method by taking into account contributions arising due to
both the quark and gluon components of the η′-meson DA.
The comparison with the CLEO data demonstrated that
allowed values of the Gegenbauer coefficients Bq

2(1 GeV2)
and Bg

2 (1 GeV2) are strongly correlated. They were ex-
tracted in [62] and read

Bq
2(1 GeV2) = 0, Bg

2 (1 GeV2) ∈ [4, 18],

Bq
2(1 GeV2) = 0.05, Bg

2 (1 GeV2) ∈ [0, 16], (5.2)

and

Bq
2(1 GeV2) = 0.1, Bg

2 (1 GeV2) ∈ [−2, 14]. (5.3)

In the present paper we select values of the parameters
Bq

2(1 GeV2) andBg
2 (1 GeV2) that obey the constraints (5.2)

and (5.3).
It is evident that the non-asymptotic terms in the quark

and gluon DAs of the η′-meson proportional to A(Q2)
and B(Q2), respectively, affect the asymptotic value of the
η′-meson–gluon transition form factor. Therefore, before

presenting contributions from these terms, it is instructive
to study the asymptotic FF itself. In the left panel of Fig. 4,
we depict the η′-meson–virtual-gluon transition FF as a
function of the gluon virtuality Q2. For the asymptotic
DA the quark component of the form factor coincides with
the full one. In the same figure the predictions obtained
within the standard HSA are also shown. One sees that in
the domain 1 GeV2 ≤ Q2 ≤ 25 GeV2 the standard pQCD
results get enhanced by approximately a factor of 2 due to
power corrections. A similar conclusion is valid also for the
gluon component of the form factor (right panel in Fig. 4,
computed by employing the η′-meson DAs).

Here some comments concerning the accuracy of the
numerical computations are in order. In Fig. 4 (left panel)
and in the following ones, the curves obtained within the
RC method, as a rule, require a summation of an infinite
series. In real numerical computations we truncate such a
series at some k = Kmax. Naturally, the question arises
about the convergence rate of this series. Let us explain
this problem by considering Fig. 4 as an example. The solid
curve with ω = 0.5 in Fig. 4 (left panel) has been found
within the RC method by employing (4.12). This expression
contains a series with factorially growing coefficients. For
definiteness we analyze the term

∫ ∞

0
due−utR(u, t)

∞∑
k=0

B(k + 2, 2 − u)βk

=
∞∑

k=0

∫ ∞

0
due−utR(u, t)

× Γ (k + 2)
(2 − u)(3 − u) . . . (k + 3 − u)

βk. (5.4)

The expansion parameter β = 2ω/(1 + ω) in (5.4) at the
point ω = 0.5 is equal to β = 2/3. Below, we write down
the values of the Gamma function Γ (k+2) = (k+1)! and
also those of the product of βk with the principal value of
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Fig. 5. The contribution of the quark a and gluon
b components of the η′ meson to the form factor
Q2Fη′gg∗(Q2, ω = ±1) versus Q2. All curves are
obtained in the context of the RC method. The
correspondence between all displayed curves and
the parameter Bg

2 is Bg
2 = 0 for the solid curves;

Bg
2 = 2 for the dot-dot-dashed curve; Bg

2 = 4
for the dashed lines; Bg

2 = 6 for the dot-dashed
line, and Bg

2 = 8 for the short-dashed curves. In
a curves corresponding only to Bg

2 = 0, 4 and 8
are shown

Fig. 6. The form factor −Q2Fη′gg∗(Q2, ω = ±1)
computed using the RC method a and the stan-
dard HSA b. The correspondence between dis-
played curves and the parameter Bg

2 is Bg
2 = 0

for solid curves; Bg
2 = 2 for the dot-dot-dashed

curves; Bg
2 = 4 for the dashed lines; Bg

2 = 6 for
the dot-dashed lines

the integral

I(k) =
∫ ∞

0
due−utR(u, t)

βk

(2 − u)(3 − u) . . . (k + 3 − u)
,

(5.5)
for k = 0, 5 and 10,

Γ (2) = 1, Γ (7) = 720, Γ (12) = 3.99168 · 107,

and

I(0) � 0.09041, I(5) � 2.44061 · 10−6,

I(10) � 1.31568 · 10−12 .

As a result, the corresponding terms in the sum given
by (5.4) take the values

0.09041, 1.75724 · 10−3, 5.25177 · 10−5,

respectively. The calculations above have been performed
atQ2 = 2 GeV2. At the momentum transferQ2 = 20 GeV2

we get

0.03898, 7.59618 · 10−4, 4.42997 · 10−5.

One observes that the convergence rates of the numerical
series are high and that we can therefore truncate them,
as a rule, at Kmax = 20.

We have analyzed the impact of the various DAs of the
η′-meson on the η′g transition form factor. The quark com-
ponent of the FF is stable for different values ofBg

2 ∈ [0, 8].
It is difficult to distinguish the corresponding curves and
therefore in Fig. 5a we can only plot some of them. In
contrast, the gluon component of the form factor demon-
strates a rapid growth with Bg

2 (Fig. 5b). As a result,
due to different signs of the quark and gluon components
of the space-like vertex function, the total vertex function
Q2Fη′gg∗(Q2, ω = ±1) forBg

2 �= 0 lies below the asymptotic
one (Fig. 6a). Comparing the predictions derived within
the RC method with those following from the standard
HSA (Fig. 6b), we see a quantitative difference between
corresponding curves.

The dependence of the quark and gluon components of
the form factor on the asymmetry parameter ω at fixed Q2

and for various DAs of the η′-meson are shown in Fig. 7.
Because Fη′g∗g∗(Q2, ω) is symmetric under the exchange
ω ↔ −ω, we present our results in the region 0 ≤ ω ≤ 1
only. We have just demonstrated in Fig. 5 that the quark
component of the FF F q

η′gg∗(Q2, ω = ±1) is not sensitive
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Fig. 7. The quark a and gluon b components of the
FF at fixed total gluon virtuality Q2 = 4 GeV2 as
functions of the asymmetry parameter ω. The RC
method is employed. The correspondence between
depicted lines and the parameter Bg

2 is the same
as in Fig. 5

Fig. 8. The quark a and gluon b components of the
form factor Q2Fη′g∗g∗(Q2, ω) at fixed Q2 versus
ω. The RC method is used. The momentum scale
for the solid curves Q2 = 10 GeV2, for the dashed
ones Q2 = 6 GeV2, and for the dot-dashed curves
Q2 = 4 GeV2

to the use of various η′-meson DAs, employed in our cal-
culations. This is valid also for its behavior as a function
of ω (Fig. 7a). In accordance with our computations, the
effect of the chosen parameter Bg

2 on the gluon component
of the FF is considerable in the whole range of ω ∈ [0, 1].

The magnitude of the quark and gluon components of
the form factor for a given DA depends on the total gluon
virtuality Q2 (Fig. 8). In this case both the quark and
gluon contributions to the FF demonstrate sensitivity to
the fixed value of Q2.

The features of the quark and gluon components of the
η′g∗ transition FF described above determine the behavior
of their sum as a function of the asymmetry parameter ω
and, as a result, we get the picture shown in Fig. 9a. Owing
to the gluon component, the form factor Fη′g∗g∗(Q2, ω)
depends on the η′-meson DA used in the calculations. For
comparison, in Fig. 9b the curves found within the standard
HSA are also shown. An enhancement of about a factor of
2 of the vertex function due to power corrections is evident.

The η′g∗ transition FF as a function of the first gluon
virtuality Q2

1 at various fixed values of the second one, Q2
2,

and for different DAs is plotted in Fig. 10.
As we have noted in Sect. 3, the principal value prescrip-

tion, adopted in this work to regularize divergent integrals,

produces higher-twist ambiguities. It is important to clarify
to what extent these ambiguities may alter our predictions.
To illustrate this effect, we depict in Fig. 11, as an example,
the scaled η′g transition FF Q2Fη′gg∗(Q2, ω = ±1). The
higher-twist ambiguities lead approximately to±15% shifts
relative to the previous RC result (line 2). On the other
hand, comparing the standard pQCD prediction (solid line
1) with the lower dashed line (that denotes the RC pre-
diction with a negative higher-twist ambiguity), we see
that still the power corrections provide an enhancement of
the standard pQCD result by a factor ∼ 2 in the region
Q2 ∼ 1–2 GeV2 and by a factor ∼ 1.6 at Q2 = 25 GeV2.
This latter effect is connected not only to larger uncertain-
ties, but it also reflects the general trend of the FF to reach
its asymptotic value, i.e., the line 1 in the limit Q2 → ∞.

6 Concluding remarks

In this paper we have evaluated power-suppressed correc-
tions ∼ 1/Q2n, n = 1, 2, . . . to the space-like η′-meson–
virtual-gluon transition form factor Q2Fη′g∗g∗(Q2, ω). To
this end, we have employed the standard hard-scattering
approach and the running coupling method in conjunc-
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Fig. 9. The FF −Q2Fη′g∗g∗(Q2, ω) obtained by
employing the RC method a and the standard HSA
b as a function of ω. The expansion coefficients are
Bg

2 = 0 for the solid lines, Bg
2 = 4 for the dashed

lines, and Bg
2 = 8 for the dot-dashed lines

Fig. 10. The form factor −Q2Fη′g∗g∗(Q2
1, ω) for

two different DAs of the η′ meson and at different
fixed values of Q2

2; viz., for the solid curves Q2
2 =

1 GeV2, for the dashed curves Q2
2 = 5 GeV2, for

the dot-dashed curves Q2
2 = 10 GeV2, and for the

dot-dot-dashed curves Q2
2 = 25 GeV2

Fig. 11. Influence of higher-twist ambiguities on the form
factor −Q2Fη′gg∗(Q2, ω = ±1), calculated with the RC method
(broken lines). The solid lines, labelled 1 and 2, correspond to
the FF found before within perturbative QCD and the RC
method, respectively. For the upper dashed line the constants
determining the ambiguities are taken to be equal to {Nq} = 1,
while for the lower dashed line {Nq} = −1, where q = 1, 2 and 3

tion with the infrared renormalon calculus. In the calcu-
lations, both the quark and the gluon distribution am-
plitudes of the η′ meson have been taken into account.
In these model DAs only the first non-asymptotic terms
have been retained and the values of the input coefficients
Bq

2(1 GeV2) and Bg
2 (1 GeV2) extracted from the analysis

of the CLEO data on the η′γ electromagnetic transition
FF have been employed.

In order to apply the RC method to the considered pro-
cess, the hard-scattering amplitudes of the corresponding
subprocesses have been generalized in such a way as to pre-
serve the symmetry properties of both the hard-scattering
amplitudes and the transition form factor itself under the
replacements x ↔ x and ω ↔ −ω. In the computations
within the RC method, the Laplace transformed expres-
sion for the running coupling has been employed. The Borel
resummed form factors, obtained this way, have been reg-
ularized by means of the principal value prescription. Vari-
ous limits of the general expression Q2Fη′g∗g∗(Q2, ω) have
been found.

Our expressions for the vertex function Fη′g∗g∗(Q2, ω),
found within the standard HSA, are in agreement with cor-
responding predictions made in [26] (up to a conventional
sign factor). It has been demonstrated that (see (2.27))
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both the quark and the gluon components of the vertex
function are symmetric under the exchange ω ↔ −ω, as
they must be owing to the Bose symmetry of the final glu-
ons. The RC method has provided us a tool for estimating
power corrections to the vertex function Fη′g∗g∗(Q2, ω).
These corrections are implicitly contained in the pQCD
factorization formulas (2.14) and (2.15) and originate from
the end-point x → 0; 1 regions. It is clear that such cor-
rections cannot been taken into account in the standard
pQCD approach by freezing the renormalization scale µ2

R
and ignoring its dependence on the longitudinal momen-
tum fraction x. As an important consistency check, we have
proven that the results obtained with the RC method in the
asymptotic limit Q2 → ∞ reproduce the standard pQCD
predictions for the vertex function. This provides further
justification for the treatment of the hard-scattering ampli-
tudes (2.29) and (2.30), and the symmetrization procedure
employed in the running coupling method.

The presented numerical analysis shows that power cor-
rections considerably enhance the standard pQCD predic-
tions for the form factor in the explored region 1 GeV2 ≤
Q2 ≤ 25 GeV2, though other sources, not considered here,
may also give rise to power corrections. Our investigations
demonstrate that the quark component of the form factor
at fixed Bq

2 = 0.1 is practically stable for several values of
Bg

2 = 0, 2, 4, 6, 8. Contrary to this, the gluon compo-
nent of the FF is sensitive to the adopted value of Bg

2 . As a
consequence, the η′g∗ transition FF was found to depend
on the gluonic content of the η′ meson. In the considered
region the gluon contribution reduces the absolute value
of the space-like form factor Q2Fη′g∗g∗(Q2, ω).

As is true of any technique for calculating power correc-
tions, the theoretical framework elaborated in the present
work makes assumptions about the regularization of the
end-point divergences. There are of course other possibil-
ities. Nevertheless, we believe that our method is useful
in pQCD analyses of the B-meson exclusive decays and
heavy-to-light B → π, ρ transition form factors in the do-
main of moderate momentum transfers. A generalization
of the RC method to describe time-like transitions as well
as its combination with resummation techniques to include
Sudakov logarithms will be the subject of separate inves-
tigations.
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Appendix

In this appendix we collect expressions for the η′-meson
quark and gluon DAs for nf = 4. The parameters (2.38)

which determine these DAs assume the following values:

γ2
gg = −35

3
, γ2

qg = 4, γ2
+ � −48

9
, γ2

− � −107
9
,

ρq
2 � 19

5
, ρg

2 � − 1
102

.

It is evident that the elements of the anomalous dimensi-
tions matrix γ2

qq and γ2
gq are nf independent and have the

values shown in (2.38).
In the nf = 4 case the DAs φq(x,Q2) and φg(x,Q2)

of the η′-meson have the form (2.39) as well, the only
difference being in the functions A(Q2) and B(Q2), which
now are defined by the expressions

A(Q2) = 6Bq
2

(
αs(Q2)
αs(µ2

0)

) 48
75

− Bg
2

17

(
αs(Q2)
αs(µ2

0)

) 107
75

,

B(Q2) = 19Bq
2

(
αs(Q2)
αs(µ2

0)

) 48
75

+ 5Bg
2

(
αs(Q2)
αs(µ2

0)

) 107
75

.

(A.1)

In the previous sections all results have been written down
for nf = 3 valid for momentum transfers 1 GeV2 ≤ Q2 <

2 GeV2. For momentum transfers in the range 2 GeV2 ≤
Q2 ≤ 25 GeV2, the choice nf = 4 has to be employed. In
this case, the expressions that determine the quark compo-
nent of the transition FF remain unchanged, except for the
function A(Q2) (and β0, R(u, t)), which should be taken
from (A.1). The expressions for the gluon component of
the FF have to be rescaled by a factor 3/4 – apart from
the replacement of the function B(Q2) (and β0, R(u, t))
– since the hard-scattering amplitudes T g

1(2)(x,Q
2, ω) ex-

plicitly depend on nf (2.30).
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D 65, 053020 (2002) [hep-ph/0107295]

47. A.P. Bakulev, S.V. Mikhailov, N.G. Stefanis, Phys. Lett. B
508, 279 (2001) [hep-ph/0103119]; hep-ph/0104290; Phys.
Rev. D 67, 074012 (2003) [hep-ph/0212250]; Preprint RUB-
TPII-04/03 [hep-ph/0303039], to be published in Phys.
Lett. B

48. A.V. Belitsky, D. Müller, Nucl. Phys. B 537, 397 (1999)
[hep-ph/9804379]

49. H. Bateman, A. Erdélyi, Higher transcendental functions
(McGraw-Hill, New York 1953), Vol. 2

50. H. Contopanagos, G. Sterman, Nucl. Phys. B 419, 77
(1994) [hep-ph/9310313]

51. G. ’t Hooft, in The Whys of Subnuclear Physics, Proceed-
ings of the International School, Erice, 1977, edited by A.
Zichichi (Plenum, New York 1978); V.I. Zakharov, Nucl.
Phys. B 385, 452 (1992)
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